surv_fl_lasso.Rd
Estimating conditional average treatment effects (CATEs) for survival outcomes using M-learner with penalized regression models Lasso (implemented via the glmnet package). The CATE is defined as tau(X) = p(Y(1) > t0 | X = x) - p(Y(0) > t0 | X = x), where Y(1) and Y(0) are counterfactual survival times under the treated and controlled arms, respectively.
surv_fl_lasso(
X,
Y,
W,
D,
t0,
W.hat = NULL,
cen.fit = "Kaplan-Meier",
k.folds = 10,
args.grf.nuisance = list()
)
The baseline covariates
The follow-up time
The treatment variable (0 or 1)
The event indicator
The prediction time of interest
The propensity score
The choice of model fitting for censoring
The number of folds for estimating nuisance parameters via cross-fitting
Input arguments for a grf model that estimates nuisance parameters
A surv_fl_lasso object
# \donttest{
n <- 1000; p <- 25
t0 <- 0.2
Y.max <- 2
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
numeratorT <- -log(runif(n))
T <- (numeratorT / exp(1 * X[ ,1, drop = FALSE] + (-0.5 - 1 * X[ ,2, drop = FALSE]) * W)) ^ 2
failure.time <- pmin(T, Y.max)
numeratorC <- -log(runif(n))
censor.time <- (numeratorC / (4 ^ 2)) ^ (1 / 2)
Y <- pmin(failure.time, censor.time)
D <- as.integer(failure.time <= censor.time)
n.test <- 500
X.test <- matrix(rnorm(n.test * p), n.test, p)
surv.fl.lasso.fit <- surv_fl_lasso(X, Y, W, D, t0, W.hat = 0.5)
cate <- predict(surv.fl.lasso.fit)
cate.test <- predict(surv.fl.lasso.fit, X.test)
# }